При пластических деформациях смещения молекул могут во много раз превышать расстояния между ними. В монокристаллах пластическая деформация связана с проскальзыванием отдельных слоев решетки друг относительно друга. В каждом кристалле существуют такие направления, по которым скольжение слоев решетки происходит особенно легко. Мы уже говорили (§ 264), что кристалл льда по своим механическим свойствам похож на стопу стеклянных пластинок, соединенных не вполне затвердевшим клеем. То же можно сказать и про другие кристаллы. На рис. 476 показан кристалл цинка, подвергшийся растяжению. На кристалле ясно видны следы скольжения слоев. Установлено, что скольжение слоев никогда не начинается сразу по всему объему кристалла. Оно начинается с какого-нибудь одного места, где решетка
Рис. 476. Монокристалл цинка, подвергшийся растяжению (схема)
527
почему-либо ослаблена (§266), и затем постепенно распространяется на другие места.
В поликристаллах тоже возможны проскальзывания слоев решетки в маленьких кристаллах, составляющих поликристалл. Однако так как направления наиболее легкого скольжения в отдельных кристалликах, вообще говоря, не совпадают, то возникновение скольжения в таких телах затруднено по сравнению с монокристаллами. Этот эффект проявляется тем в большей мере, чем мельче кристаллы. Поэтому в мелкозернистых телах пластическая деформация возникает при большей деформирующей силе, чем в крупнозернистых.
Кроме указанного обстоятельства, дело осложняется наличием прослоек между кристалликами, механические свойства которых отличаются от самих кристалликов. Что касается аморфных тел, то в них молекулярная картина пластической деформации такая же, как молекулярная картина спокойного (ламинарного) течения жидкости (§ 194), Мы уже говорили о том, что аморфное состояние можно рассматривать как жидкое с очень большой вязкостью.
§ 287. Изменение энергии при деформации тел. Груз, растягивающий проволоку, опускается и, следовательно, сила тяжести совершает работу. За счет этой работы увеличивается энергия деформирующегося тела, которое при этом переходит из ненапряженного состояния в напряженное. Таким образом, при деформации увеличивается внутренняя энергия тела. Увеличение внутренней энергии состоит в увеличении потенциальной энергии, зависящей от взаимного расположения молекул тела. Если деформация упругая, то при ее снятии эта добавочная энергия исчезает и за счет нее упругие силы совершают работу. При упругой деформации твердых тел не получается заметного нагревания их. В этом отношении они отличаются от газов, которые при сжатии нагреваются (§ 225). При пластической деформации твердых тел они значительно нагреваются. В этом повышении температуры, т, е. увеличении кинетической энергии молекул, и проявляется увеличение внутренней энергии деформированного пластически тела; конечно, и в этом случае увеличение внутренней энергии происходит за счет работы сил, обусловливающих деформацию. Сюда относятся случаи нагревания многократно сгибаемой проволоки или куска свинца, расплющиваемого ударами молотка, о которых говорилось в § 202.
Из изложенного в настоящей главе следует, что для практического использования материалов в строительной технике и при изготовлении всевозможных машин и механизмов чрезвычайно важно знать, как отзывается материал на воздействие внешних сил. Исследования по физике твердого тела позволили за последние годы выяснить много вопросов, относящихся к физической природе происходящих явлений. далее 


Используются технологии uCoz